

Formal Intramolecular (4 + 1)-Cycloaddition of Dialkoxycarbenes: Control of the Stereoselectivity and a Mechanistic Portrait

Francis Beaumier, Marianne Dupuis, Claude Spino,* and Claude Y. Legault*

Département de Chimie, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, Quebec, Canada J1K 2R1

Supporting Information

ABSTRACT: The stereoselective synthesis of 5-5, 6-5, and 7-5 fused *O*-heterocyclic compounds is reported. The key reaction is a formal intramolecular (4 + 1)-cycloaddition involving a dialkoxycarbene and an electron-deficient diene where the stereoselectivity is dependent on the length of the tether. An analysis of the stereochemical outcome of this reaction sheds light on its complex mechanistic picture. High-level calculations were used to support the proposed mechanistic portrait.

INTRODUCTION

Since the discovery of the Diels–Alder reaction in 1928,¹ the [4 + 2]-cycloaddition has gained tremendous popularity among synthetic chemists because it gives rise to complex sixmembered carbo- or heterocycles from structurally simpler starting materials by the direct formation of two C–C bonds with control of up to four stereocenters.² Its reliability and the easy prediction of its structural and stereochemical outcome have helped make this reaction an essential tool in organic synthesis.

Like its six-membered ring counterpart, the concerted (4 + 1)cycloaddition³ between a carbene and a diene is a cheletropic reaction allowed by the frontier molecular orbitals theory.⁴ In principle, this reaction enables the stereoselective synthesis of cyclopentene derivatives with control of up to three stereocenters. In practice, however, examples of concerted (4 + 1)-cycloadditions are very scarce in the literature and are not general, usually involving one pair of a particular carbene and diene.⁵ The high and sometime unusual reactivity⁶ of free carbenes may explain why this transformation has been little exploited in the field of organic chemistry. Another reason is the difficulty in controlling the chemoselectivity of carbenes for the cycloaddition reaction, particularly given their known propensity to preferentially give cyclopropane products instead of (4 + 1)-cycloadducts when reacting with 1,3-dienes.⁷⁻⁹ Fisher carbene complexes give mostly cyclopropanation products with electron-poor dienes.¹⁰ Given the ubiquity of five-membered rings in natural and pharmaceutical products,¹¹ synthetic chemists have dedicated much attention toward developing alternative methodologies to circumvent the important limitations of the concerted (4 + 1)cycloaddition, namely, the poor yields of cycloadducts obtained and the low tolerance of the carbene for spectator functional groups.5

Among the alternative methods, the cyclopropanation of 1,3dienes followed by a vinylcyclopropane rearrangement emerged as one of the most effective formal (4 + 1)-annulation strategies. By using to their advantage the apparent predilection of carbenes for cyclopropanation of 1,3-diene over the (4 + 1)-cycloaddition, Hudlicky,¹² Danheiser,¹³ and others set the foundation for the stereoselective synthesis of cyclopentenes.¹⁴ The incorporation of one carbon unit such as carbon monoxide,¹⁵ isocyanides,¹⁶ diazomethane,¹⁷ ylides,¹⁸ various carbenoids,¹⁹ or nucleophilic carbenes^{6f,8,20,21} into 1,3-dienes have equally met with some degree of success to yield (4 + 1)-cycloadducts in good yields.

Using Warkentin's 2,2-dialkoxy-5,5-dimethyl- Δ^3 -1,3,4-oxadiazolines as a source of dialkoxycarbenes,²² our research group reported the discovery of a (4 + 1)-annulation that demonstrated the ability of nucleophilic carbenes to stereoselectively add to electron-deficient dienes, either intermolecularly or intramolecularly.^{8,20} The intermolecular version gave modest yields and worked best when the diene was activated by the presence of two electron-withdrawing groups (Scheme 1).

Scheme 1. Examples of Stereoselective Intermolecular (4 + 1)-Cycloadditions

Received: January 6, 2012 Published: March 11, 2012

ACS Publications © 2012 American Chemical Society

Scheme 2. Examples of Stereoselective Intramolecular (4 + 1)-Cycloadditions

The intramolecular reaction proved far more promising, affording good to high yields of bicyclic O-heterocycles 10a-15a and showing good potential for the efficient synthesis of 3-cyclopenten-1-ones 16 or 17, where the stereoselectivity at the 1- and 4-positions is controlled by the length of the tether (Scheme 2).

We report herein an in-depth study of the scope and mechanism of this unique intramolecular (4 + 1)-cycloaddition involving dialkoxycarbenes and electron-deficient dienes. Our study encompasses a wide range of parameters that were varied with the aim of acquiring knowledge on the generality, usefulness, and stereochemical predictability of the reaction. The observed stereoselectivities and the proposed mechanistic picture of the (4 + 1)-cycloaddition were also supported by computational calculations.

The most striking aspect of the reactions shown in Scheme 2 was the complete reversal of stereoselectivity observed in going from the 5-5 (10a:11a = 5:95) to the 7-5 fused bicyclic system (14a:15a = >99:1), with the 6-5 fused bicyclic system (12a:13a = 70:30) being an intermediate case. Clearly, we needed to better understand the reasons behind this behavior in order to better predict the stereochemical outcome of the reaction. Although we had suggested in a previous publication that a change in mechanism could be at the origin of this selectivity reversal,⁸ the present study provides mechanistic insights that speak to the contrary.

Generation and Prior (4 + 1)-Cycloadditions of Dialkoxycarbenes. Since the first use of dimethoxycarbene (DMC) 22 by Hoffman and co-workers in the 1960s,²³ dialkoxycarbenes have been known to act as nucleophiles and to react with various electrophiles such as carbonylated compounds (anhydrides, acyl chlorides, ketones, esters, ketenes, and isocyanates), thiocarbonyles, and imnes and with various alkenes, alkynes, and cumulenes.^{22,24} Few formal (4 + 1)-cycloadditions with DMC have been reported and involve tropone 19 or tetraphenylcyclopentenedione 20,²⁵ substituted bis-ketenes 24,²⁶ and vinylisocyanates 25 (Scheme 3).²⁷ Yet, carbene 22 gave cyclopropane derivatives in low yield when reacted with 1-phenyl- or 1,1-diphenyl-1,3-butadiene.²⁵

Fundamental studies and synthetic applications of dialkoxycarbenes have been constrained for a long time by the difficulty in generating them. The thermolysis of norbornadiene derivatives²⁸ or the thermolysis or photolysis of 3,3-dialkoxydiazirines²⁹ proved problematic, either because they produce large amounts of byproduct or because they are known to be explosive. Furthermore, the synthesis of these carbene precursors is not Scheme 3. Formal (4 + 1)-Cycloadditions of Dimethoxycarbene

trivial. Warkentin's oxadiazolines, such as **1** or 7a-9a, have greatly simplified this task for the generation of dialkoxycarbenes: they are easily prepared from simple precursors (*vide infra*) and produce only volatile and innocuous byproduct (N₂ and acetone).²² Moreover, the nature of the oxadiazoline can be easily changed to alter the thermolysis temperature.³⁰

To illustrate how oxadiazolines are easily prepared, a typical example is given in Scheme 4. In the presence of a catalytic amount of acid, primary alcohols will substitute the acetate on **29** in good yield, as was the case of alcohols **27** and **28**, affording the corresponding oxadiazoline in 87% and 90% yields, respectively. Besides being a reliable source of the dialkoxycarbene, the oxadiazoline also proved to be a tolerant functional group. It withstands temperatures of up to 80-85 °C and is unreactive toward many nucleophilic or basic reagents. For more details on the complete synthesis of all precursors, see the Supporting Information.

RESULTS AND DISCUSSION

Dienes tethered to the oxadiazoline moiety with a three-carbon chain (8) gave 6–5 bicyclic products 12 and 13 upon thermolysis (cf. Scheme 2). They were the starting point of our investigation on the effect of the nature and length of the tether on the stereochemical outcome of the reaction. We first revisited the thermolysis of diene 8a in more details because its moderate diastereoselectivity contrasted with the high stereoselectivities obtained with the two- and the four-carbon tethered dienes 7a and 9a, respectively.²⁰ Note that in all observed products 10a–15a the relative stereochemistry of the ring fusion is *cis.*³¹

Scheme 4. Typical Preparation of a Cycloadduct Precursor

After careful re-examination of the reaction conditions, cycloadducts 12a and 13a were obtained with a significant increase in yield and a slight increase in ratio using pyridine as an additive (84% vs 61%, 14a:15a = 70:30 vs 75:25). These reaction conditions also gave higher yields for the 5-5 (86% vs 85%, 10a:11a = 5:95) and the 7-5 oxabicyclic compounds (79% vs 70%, 14a:15a = >99:1).

The (4 + 1)-cycloaddition could not be extended to the formation of 4–5 or 8–5 oxabicyclic compounds (Scheme 5). Thermolysis of diene **30** failed to give any of the desired product **32** and gave ester **31** as the only identifiable product in 35% yield.^{32f}

The formation of the unstable dimer 34 $(70\%^{33})$ in the case of diene 33 (Scheme 5) is somewhat surprising in light of the efficiency and yield with which the 7–5 bicyclic compound 14a was formed. Entropy is probably to blame for this difference, but we were nevertheless expecting at least some product 35 to be formed given that even intermolecular reactions give 20– 65% of the desired cycloadducts.^{8,20}

Remarkably, many activating groups proved to be compatible with the high reactivity of dialkoxycarbenes as shown by the good yields of the expected (4 + 1)cycloadducts obtained upon thermolysis of dienes 8a-h (Table 1, entries 1-5 and 8). The conversion of aldehyde 8d into products 12d and 13d was excellent (Table 1, entry 4), though their isolated yields were low due to their instability. Compounds 12d and 13d easily shed methanol to give cyclopentadiene 36 (Figure 1).

The only low-yielding (4 + 1)-cycloaddition resulting from the thermolysis of nitrodiene **8f** (Table 1, entry 6) was likely due to the acidity of the allylic protons³⁴ coupled with the basicity of the carbene (estimated pK_a values for dimethoxycarbene = 11-16).³⁵ This gives rise to competing acid—base reactions.³⁶ We were unable to identify any specific insertion products in the present case, but we had shown in the past that

Table 1. Effect of the Nature of the Electron-Withdrawing Group on the Intramolecular (4 + 1)-Cycloaddition

MeC N		E		H, E +	H, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Me	Me	8		12	13
Entr	y Diene 8	Е	Conditions ^a	Yield of $12+13$ $(\%)^b$	Ratio 12:13 ^c
1	8a	CO ₂ Me	А	84	75:25
2	8b	SO_2Ph	Α	79	91:9
3	8c	CN	А	77	82:18
4	8d	СНО	С	$49^{d} (85^{e})$	60:40
5	8e	Br	А	74	67:33
6	8f	NO_2	А	23	63:37
7	8g	CONEt ₂	В	44 ^f	58:42
8	8h	CF ₃	С	46 (>70 ^e)	92:8

^{*a*}All reactions were performed on 0.25–0.50 mmol scale at 0.01–0.04 M with 25 mol % of pyridine. Condition A: PhMe, 111 °C, 20 h. Condition B: PhCl, 132 °C, 5 h. Condition C: PhMe, 160 °C (sealed tube) 15 h. ^{*b*}Isolated yield. ^{*c*}Determined by ¹H NMR analysis of the crude reaction mixture. ^{*d*}Product **36** was also isolated in 12% yield after flash chromatography ^{*e*}Conversion determined by ¹H NMR spectroscopy. ^{*f*}Product **37** was also obtained in 17% proportion as measured from the ¹H NMR of the crude reaction mixture.

dimethoxy carbene inserts into the acidic proton of nitromethane. 37

The transient dialkoxycarbene generated from the thermolysis of amide 8g led to a complex mixture of compounds, of which 12g and 13g were isolated in moderate yield (Table 1, entry 7). Surprisingly, product 37 (Figure 1) was observed in

36

37

Figure 1. Side products resulting from the thermolysis of dienes 8d and 8g.

significant amounts $(17\%^{33})$.³⁸ The Z configuration of the acyclic double bond in 37 was established from the observed coupling constant between the olefinic protons (11.5 Hz). At this point, it is hard to explain the difference in reactivity of amide **8g** compared to ester **8a**, but it seems that amides are in general a poor choice of activating group for this cyclo-addition.³⁹

The volatility of **12h** and **13h** is thought to be in part responsible for the loss in yield of the thermolysis of trifluoromethyl-substituted diene **8h** (Table 1, entry 8).⁴⁰ Its conversion was judged to be much higher by ¹H NMR. The high observed stereoselectivity illustrates the potential of inductivity-based (as opposed to resonance-based) electron-withdrawing groups to activate a diene moiety toward cycloaddition with a nucleophilic carbene. Given the increasing importance and impact of fluorinated compounds in the pharmaceutical, agrochemical, and materials industries,⁴¹ the (4 + 1)-cycloaddition may prove useful to diastereoselectively install a trifluoromethyl group on a five-membered ring.

From all of the cases shown in Table 1, a trend emerges: the stronger the electron-withdrawing group on the diene, the lower the diastereoselectivity (resonance-based electron-withdrawing ability: $CF_3 < SO_2Ph/CN < CONEt_2/CO_2Me < RCOR < RCHO < RNO_2$). The trifluoromethyl group is the least capable of stabilizing a negative charge and gives the highest diastereoselectivity, while modest selectivities are obtained with the aldehyde and nitro functionalities.

By contrast, the stereoselectivity of reactions leading to 7-5 bicyclic compounds remained unaffected by the variation of the nature of the electron-withdrawing group. Using optimized reaction conditions, all carbene precursors shown in Scheme 6 nicely gave >95% of 14a-c as single diastereomers.

Scheme 6. Effect of the Nature of the Diene's Electron-Withdrawing Group on 7–5 Bicyclic Systems

That at least one electron-withdrawing group is required for the (4 + 1)-cycloaddition to proceed was also unambiguously established. When electronically unactivated diene **8i** was thermolyzed, cyclopropane **38i** was isolated in **81%** yield. Interestingly, at lower temperature, dienes **8g-h** led to the formation of isolable bicyclic cyclopropanes **38g-h** (Table 2, entries 1–2). Inspired by the work of Carboni, Carreaux, and Hall,⁴² we thought that a successful cycloaddition reaction of **8j** would have led to a (4 + 1)-cycloadduct bearing an allylic boronic ester that could further participate in allylboration of Table 2. Formation of Cyclopropanes 38g-j from Dienes 8g-j

^{*a*}All reactions were performed on 0.25–0.50 mmol scale at 0.01–0.04 M with 25 mol % of pyridine. Condition A: toluene, 111 $^{\circ}$ C, 20 h. Condition B: PhCl, 132 $^{\circ}$ C, 5 h. ^{*b*}Conversion determined by ¹H NMR spectroscopy. Any attempts of purification resulted in complete degradation of the product. ^{*c*}After flash chromatography on silica gel.

carbonyl compounds. However, thermolysis of diene 8j afforded only cyclopropane 38j. Note that heating either 38i or 38j to $160 \, ^{\circ}C$ did not lead to any amount of the corresponding (4 + 1)-cycloadducts.

Moving the electron-withdrawing group to the 2-position (dienes 39 and 41) led surprisingly to the sole formation of 5-3 and 6-3 bicyclic compounds 40^{33} and 42 as single diastereomers in excellent yields (Scheme 7). However, lengthening the tether (diene 43) afforded a 6% yield of (4 + 1)-cycloadduct 45 along with cyclopropane 44. It should be noted that the *trans*-fusion between the seven- and five-membered rings in compound 45 is observed for the first time after dozens of cycloadditions we have carried out. The implication of the observed stereoselectivity will be discussed in the mechanistic section of the paper.

Cyclopropanes **38g–j**, **40**, **42**, and **44** are relatively stable compounds, interesting both from a structure and reactivity standpoint.⁴³ This intramolecular process could provide a new efficient way to construct dialkoxyvinylcyclopropanes that would subsequently undergo vinylcyclopropane-cyclopentene rearrangements (to give formally (4 + 1)-cycloadducts),^{141,44} [5 + 2] cycloadditions,⁴⁵ radical-mediated ring-opening reactions,⁴⁶ and a host of other reactions that we will investigate in due course.

Transposing the electron-withdrawing group at the 3-position of the diene had a profound effect on the stereochemical results (Scheme 8). First, cycloadducts 47 and 49 were obtained in good yields with complete stereoselectivity starting from dienes 46 and 48, respectively. While the isolation of a single diastereomer 47 was consistent with the stereochemical outcomes shown in Scheme 2 (1-substituted diene 7a), the isolation of 49 as the only adduct was quite stunning in two respects: a mixture of isomers was anticipated, and diastereomer 49 was expected to be a minor product.

Thermolysis of diene **50** led to the formation of three compounds, which we identified as cycloadducts **51a**, **51b**, and **52**, in 20%, 34%, and 17% yields, respectively (Scheme 8).

Higher structural complexity is always desirable, and it is of synthetic relevance that chiral quaternary carbon centers could be created on the cyclopentene scaffold with stereoselectivities superior to the analogue 8a. We were delighted to find that thermolysis of 53 resulted in the formation of the

Scheme 8. Thermolysis of 46, 48, and 50, Having an Electron-Withdrawing Group at the 3-Position

corresponding cycloadducts **54** and **55** in decent yield and in a ratio of 81:19 (Scheme 9). We were also excited, despite a moderate 44% yield, about the highly stereoselective formation of **57** from oxadiazoline **56**. In addition, the corresponding cyclopropane **59** was isolated in 12% yield as a 70:30 mixture of stereoisomers at C-3. As depicted in scheme 9, the temperature required to accomplishing the (4 + 1)-annulation depends on the position of the methyl group.

Mechanistic Studies. Mechanistic studies of this (4 + 1)cycloaddition is unfortunately complicated by the fact that the rate-determining step is the ring opening of the 2,2-dialkoxy-5,5-dimethyl- Δ^3 -1,3,4-oxadiazoline **60** in the generation of carbene **61** (Scheme 10).⁴⁷ Once generated, the highly reactive singlet⁴⁸ carbene **61** reacts immediately with the diene moiety, one way or another, to eventually lead to the formation of the (4 + 1)-cycloadducts **62**. The concentration of the free carbene during the thermolysis is thus likely to be low.

We elected to use stereochemistry as a probe to gain mechanistic insights on this reaction. We are well aware that the stereochemistry of the product cannot be used to draw a complete picture of the mechanism of the transformation of 61 into 62. However, coupled with evidence of the presence or the absence of key intermediates, it can help answer questions about the concertedness of bond-forming and bond-breaking events.

Scheme 9. Formation of Cyclopentenes with Chiral Quaternary Carbons

Scheme 10. Thermolysis of 2,2-Dialkoxy-5,5-dimethyl- Δ^3 -1,3,4-oxadiazolines 60 and Formation of Cyclopentenes 62

At the onset of our studies on the intramolecular (4 + 1)annulation of electron-rich carbenes with electron-deficient dienes, we considered all mechanistic possibilities that allowed the formation of bicyclic cyclopentenes **62** from the corresponding carbene **61**. Although examples of concerted (4 + 1)-cycloadditions are quite scarce in the literature, we believed that a concerted mechanism remained possible (Scheme 11, top). This cheletropic reaction is allowed according to the Frontier Molecular Orbital theory⁴⁹ and would produce either the cycloadduct **62a** or **63** from transition states **TS61a** or **TS61b**, respectively.

Another accessible mechanism is the isomerization of a vinylcyclopropane to the corresponding cyclopentene, the product of a formal (4 + 1)-cycloaddition. The dialkoxycarbene **61** could react stereospecifically with the alkene,⁵⁰ via transition state TS-61c, to give vinylcyclopropane 64, which could then rearrange via three distinct pathways to yield (4 + 1)cycloadducts 62a, 62b, or 63 (Scheme 11, center).¹⁴ If intermediate 64 participates in a concerted [1,3]-sigmatropic rearrangement with inversion of configuration at the migrating center, adduct 63 will result. Conversely, the collapse of the zwitterion 65 would provide cycloadducts 62a or 62b.⁵¹ Note that the rearrangement of the intermediate resulting from a radical ring opening of 64, albeit possible,⁵² is unlikely to operate due to the donor-acceptor nature of the studied vinylcyclopropanes.⁵³ Finally, a complete ionic mechanism $(61 \rightarrow 65 \rightarrow 62)$ must also be considered as a possible competing pathway for the (4 + 1)-cycloaddition (Scheme 11, bottom). Any one or a mixture of the proposed pathways for each substrate may be operative and thus lead to diastereomeric cyclopentenes 62a, 62b, or 63. We will show that different substrates follow a complex array of possible and energetically close mechanistic pathways that are greatly influenced by the

architecture of the substrate. The following discussion on the mechanism is divided into sections according to the position of the electron-withdrawing group on the diene.

As mentioned in the previous section, dienes with a methyl ester at position 1 experience a profound change in stereoselectivity when the length of the chain tethering the carbene to the diene is varied. Indeed, a complete reversal of stereoselectivity was observed in going from the 5-5 (10a:11a) to the 7-5 fused ring system (14a:15a) with the 6-5 fused ring system (12a:13a) being an intermediate case (Scheme 12). Each pair of diastereomeric cycloadducts are stereochemically stable, either upon further heating or when resubmitted to the initial reaction conditions. Therefore, we can conclude that, at the very least, the last step in the overall mechanism is irreversible. We can confirm that this is the case for all cyclopentene adducts found in the present study, and this important issue can be considered solved.

Cycloadduct 11a (corresponding to 62b in scheme 11) was clearly not produced by a concerted (4 + 1)-cycloaddition, but what of cycloadduct 14a (corresponding to 62a in Scheme 11)? Could the lengthening of the tether provoke a change from an ionic to a concerted mechanism? Or did the tether length simply influence the selectivity via conformational biases? Lastly, are vinylcyclopropane intermediates 64a-c involved, and if so, what role do they play in this diastereoselective process?

We started by tackling the question of whether intermediate cyclopropanes 64a-c were involved in the overall process or not. For the transformation of 7a-9a to 10a-15a under the conditions shown in Scheme 12, cyclopropanes were never detected. A computational study of all the available reaction pathways for 7a-9a was carried out, and the formation of a cyclopropane intermediate was found to be favored by calculations (Figure 2). The common reaction solvent is

Scheme 11. Mechanistic Pathways for the (4 + 1)-Cycloaddition of Carbenes 61

Concerted (4+1)-cycloaddition

Scheme 12. Stereoselective Intramolecular (4 + 1)-Cycloadditions of Dienes 7a-9a

toluene. Due to its nonpolar nature, we considered that optimization of the structures in the gas phase was adequate. A thorough analysis of the reaction pathways did not lead to any concerted (4 + 1)-cycloaddition transition structure. Analysis of the process gave evidence of the initial formation of the vinylcyclopropane intermediate. It was found that the reaction proceeds by an initial conjugate addition of the carbene on C-4 of the diene ester moiety (Figure 2 top).⁵⁴ In all cases, this addition was found to occur with a preference of 2 kcal/mol on the *s*-trans

conformation of diene 7a-9a. The formed adducts then preclude the direct formation of (4 + 1)-cycloadducts 10a-15a, as rotation around the C2–C3 bond is strongly disfavored due to the delocalization of the anionic ester moiety.⁵⁵

Analysis of the vibrational mode of the imaginary frequency clearly shows a unique bond-forming event (conjugate addition) in transition structures TS65a-c. IRC calculations were carried out to determine if a stable zwitterionic intermediate could be found following the addition. In all

Figure 2. B3LYP/6-311++G(d,p)//B3LYP/6-31+G(d) optimized conjugate addition TSs and PES inflection points obtained from IRC calculations on respective TSs. Relative energies reported in kcal/mol with respect to the corresponding most stable conformation of the free carbene.

Scheme 13. Generation of Cyclopropanes 64a-c at Low Temperature

these cases, a rapid collapse to the corresponding vinylcyclopropanes **64a–c** was obtained. These are clear examples of two-step no-intermediate processes.⁵⁶ Inspection of the inflection point that follows the initial transition structure showed structures **IP64a–c** with a partially formed bond between C_{carbene} and C-3, leading to the cyclopropane. Optimization of these transition structures using a solvation model (i.e., PCM/Toluene) resulted in almost identical structures and no stable intermediates on the calculated IRC paths. This is an evidence of the reliability of gas phase calculations for this study.

With this in mind, we considered that the required temperature for the thermolysis of the 2,2-dialkoxy-5,5-dimethyl- Δ^3 -1,3,4-oxadiazolines 7a-9a (>100 °C) may have been too high to allow the observation of cyclopropanes 64a-c.

We thus turned to a modified version of these oxadiazolines, namely, the 2,2-dialkoxy-5-methyl-5-(*p*-methoxy)phenyl- Δ^3 -1,3,4-oxadiazolines **66a**-**c**, which undergo cycloreversion at approximately 50 °C (Scheme 13).^{30b-d} When dienes **66a**-**c** were heated in toluene at temperatures ranging from 50 to 80 °C, the unstable and moisture-sensitive **64a**-**c** were observed and characterized as single diastereomers. Importantly, heating these cyclopropanes in toluene converted them into the corresponding (4 + 1)-cycloadducts **10a**-**15a** with almost identical stereoselectivities as the reactions reported in Schemes 2 and 12. Cyclopropane **64a** readily rearranged at 50 °C, while **64b** and **64c** necessitated higher rearrangement temperatures. The reactivity trend of cyclopropanes **64a**-**c** seems to be directly related to ring strain of the 5, 6 and 7–3 bicyclic systems. As a control experiment, we thermolyzed **66b** directly

Scheme 14. Thermolysis of Dienes Z,E-7a-9a

at 111 °C and observed nearly the same yield and ratio of products 12a and 13a as for the thermolysis of 8a or 64b. Aside from the small difference in yields, attributable to the relative instability of dienes 66a-c and vinylcyclopropanes 64a-c at high temperature, these experimental results are in accordance with computational findings and support very strongly the implication of cyclopropanes in the mechanism of formation of (4 + 1)-cycloadducts.

We surmised that the stereochemistry of the vinylcyclopropane intermediates 64a-c had a direct influence on the stereochemistry of the (4 + 1)-cycloadducts. To prove or disprove this hypothesis, we decided to examine the effect that the double bond geometry in the starting diene would have on the ratio of cycloadducts. Changing the geometry at the 3,4position of the diene should led to the cyclopropanes epimeric to 64a-c, namely, cyclopropanes 67a-c (Scheme 14). The thermolysis of $Z_{,E-7a-9a}$ gave interesting results. While both Z,E-7a and Z,E-9a led to very similar ratios of cycloadducts as per dienes E,E-7a and E,E-9a, respectively (cf. Scheme 12), only diene Z,E-8a afforded a complete reversal of stereoselectivity. We repeated these experiments several times, and the reported ratios were constant and reproducible. Moreover, the isolation of cyclopropane 67c in 19% yield as a single stereoisomer was evidence of the stereospecificity of the (2 + 1)cycloaddition reaction. This was the first time a dialkoxycyclopropane did not rearrange readily at 111 °C. Thermolyzing Z,E-9a at a higher temperature (PhCl, 132 °C) gave 14a (38%) as the only isolable bicyclic adduct. When comparing cyclopropanes 64c and 67c, it seems that the stereochemistry of the cyclopropane intermediate has an important effect on its rate of rearrangement.57

At this time, we can put forth the following hypotheses: (1) the thermolysis of substrates bearing an electron-withdrawing group at position 1 of the diene, led to the corresponding carbenes, which undergo a stereospecific cyclopropanation to give 64a-c or 67a-c depending on alkene geometry (Scheme 15); (2) the fact that we observed cycloadducts 10a-15a with *cis* ring junctions precludes a concerted vinylcyclopropane

rearrangement as a possible pathway for their formation (cf. Scheme 11, center); (3) in the case of intermediates **64a** and **67a** (leading to 5–5 fused bicyclic systems) and **64c** and **67c** (leading to 7–5 fused bicyclic systems), the cyclopropane ring opens to a zwitterion (**65a** or **65c**) and free bond rotation occurs before its stereoselective collapse to the corresponding cycloadduct **11a** and **14a**, respectively (Scheme 15, $k_{rot} > k_1$ or k_2).

Yet, the selectivity switch in going from diene 7a to 9a still puzzled us. A further conundrum was why a selectivity switch was observed in going from E,E-8a to Z,E-8a (leading to 6-5 fused bicyclic systems) but not in the case of E,E-7a to Z,E-7a or E,E-9a to Z,E-9a. A free equilibration of the different rotamers of zwitterion 65b is excluded on the basis that the same ratios of products should have been obtained regardless of double bonds geometries in the starting diene. The only possibility left is that the cyclopropanes 64b and 67b open to different rotamers of zwitterion species 65b that collapse at a rate competitive with bond rotation $(k_{rot} < k_1 \text{ or } k_2)$ (each may open to give zwitterionic species E-65 (Scheme 15), but the trans internal double bond prevents cyclization). Although experimental data gave us many hints on the reaction mechanism, we were still unable at this point to explain the discrepancy in the stereochemical outcomes for the rearrangement of 64a-c and 67a-c, the implication of their corresponding zwitterions 65a-c, and the fundamental origin of the stereoselectivities. We thus had recourse to high level calculations.

Optimization of transition structures leading to both cycloadducts **10a**, **12a**, **14a** and **11a**, **13a**, **15a** were done to help us understand this rather drastic selectivity difference (Scheme 15, k_1 vs k_2) for the 5–5, 6–5, and 7–5 fused bicyclic systems with an ester at C-1. The existence of diradical species was investigated, and they were found to be either nonexistent (singlet) or highly disfavored (triplet). It was possible to find and characterize well-defined polar transition structures for the formation of all (4 + 1)-cycloadducts (Figure 3). These transition structures possess relative free energies lower than

Scheme 15. Competitive Rates for the Rearrangements of 64a-c and 67a-c

Figure 3. B3LYP/6-311++G(d,p)//B3LYP/6-31+G(d) optimized cyclization TSs, leading to 10a, 12a, 14a (a) and 11a, 13a, 15a (b). Relative energies reported in kcal/mol with respect to the respective most stable conformation of the free carbene.

their related conjugate addition step (cf. Figure 2, TS65a-c). This is evidence that the initial addition of the free carbene is irreversible. A notable feature of all transition states in Figure 3 is their "early" character with the forming bond length ranging from 2.83 to 2.97 Å. IRC calculations were performed on these TS structures to ensure their connection to the final products and determine if there was the existence of stable zwitterionic intermediates (65a-c). TS10a and TS11a both led to a common intermediate 65a through the IRC calculations, via a barrier-less rotation process. A more thorough geometric optimization of 65a, however, led to a very flat potential energy surface near the transition states and an almost barrierless closure to the cyclopropane 67a. IRC of TS12a also shows a very flat surface with no stable zwitterionic intermediate. Interestingly, IRC of TS13a directly connects 67b to 13a, with no intermediate. The same type of behavior was found for both TS14a and TS15a, which show paths that directly connect 64c to 14a and 67c to 15a, respectively. These results clearly indicate the transient nature of intermediates 65a-c and the possible dynamic effects that could prevent equilibration between rotamers 1 and 2 of 65a-c (Scheme 15). They

could even be perceived as concerted [1,3] sigmatropic rearrangements with retention of configuration. Such forbidden processes have been previously rationalized by stabilization though the "subjacent orbital effect".⁵⁸ However, in the cases described in the current study, the stabilization can be explained by charge delocalization, as observed by the highly polar nature of the transition structures. This is reminiscent of oxyanion-accelerated vinyl cyclopropanes rearrangements reported by Danheiser et al.⁵⁹

To evaluate this possibility, the free energy barriers for the isomerization of vinylcyclopropanes 64a-c to the corresponding cycloadducts were compared (Table 3). The barriers of isomerization for 64a are lower than the corresponding barriers for 64b-c. This is in good agreement with the experimental results obtained for the reactions of 64a-c (cf. Scheme 13), as 64a readily converts to 11a at 50 °C, whereas 64b and 64c need a higher temperature (111 °C) to react.

The correlation between theory and experiment for selectivities observed in the rearrangement of **64a** is very good (Table 3, entries 1 and 2). The computed value of 2.1 kcal/mol, which predicts a 6:94 ratio for **10a** and **11a**, is almost

Table 3. Computed B3LYP/6-311++G(d,p)//B3LYP/6-31+G(d) Free Energy Barriers and Differences for the Isomerization of Vinyl Cyclopropanes 64a-c to the Corresponding Cyclopentenes^{*a*}

entry	TS	$\Delta G_{\rm iso}^{\ \ \ }$	$\Delta\Delta G^{\ddagger}$	calcd ratio	exptl ratio ^b
1	TS10a	27.6	+2.1	6:94 (10a:11a)	5:95 (10a:11a)
2	TS11a	25.5			
3	TS12a	30.5	+0.6 ^c	31:69 (12a:13a)	$\begin{array}{c} 75:25 \ (28:72)^d \\ (12a:13a) \end{array}$
4	TS13a	29.9			
5	TS14a	31.0	-5.8	>99:1 (14a:15a)	>99:1 (14a:15a)
6	TS15a	36.8			

^{*a*}Free energy barriers calculated relative to the corresponding vinylcyclopropanes **64a–c**. ^{*b*}Ratio observed in toluene (cf. Scheme 3). $^{c}\Delta\Delta E_{\text{ZPE}}^{\ddagger} = -0.1$ kcal/mol. ^{*d*}Ratio observed in acetonitrile (see discussion on solvent effect later in this article).

identical to the experimental ratio of 5:95 obtained at 111 °C, which corresponds to a $\Delta\Delta G_{iso}^{\ddagger}$ of 2.3 kcal/mol. Here, the stereoselectivity can be explained by a small conformational bias in the transition structures: in **TS10a**, the vinylogous ester enolate chain is pseudo equatorial on the five-membered ring, causing a torsion (22°) of the C1–C2 bond to accommodate orbital alignment to form the bond; at the opposite, in **TS11a**, the vinylogous ester enolate moiety can remain planar during the bond-forming event. Scan of the C1–C2 bond on a model system indicates that this torsion can account for as much as 1.7 kcal/mol, in good agreement with the observed difference.

Additionally, the energy difference (5.8 kcal/mol) computed for the isomerization of **64c** predicts a ratio of >99:1, in good agreement with experimental observations (Table 3, entries 5 and 6). Due to the extra degree of freedom of the sevenmembered ring, it is possible in **TS14a** to position the vinylogous ester enolate in a pseudoaxial fashion, enabling cyclization without any torsion in the π -system. In contrast, a severe interaction developing between the C-1 vinylic proton and the ring residue can be found in **TS15a**. Furthermore, the seven-membered ring needs to adopt a higher energy conformation to position the vinylogous ester enolate in a pseudo equatorial fashion. Summation of both factors can explain the observed stereoselectivity.

For the rearrangement of 65b, a competition of two factors occurs: as was the case for TS10a, there is also a destabilizing torsion of the C1-C2 bond in the vinylogous ester enolate π -system of **TS12a**; in **TS13a**, a severe interaction is developing between the C-1 vinylic proton and the axial hydrogen on the six-membered ring. Both effects compete to lead to a small energy difference between both transition structures (0.6 kcal/ mol). The zero-point energy barrier difference $(\Delta \Delta E_{ZPE}^{\dagger})$ is almost nonexistent (-0.1 kcal/mol). IRC calculation on TS12a shows a very flat surface, whereas IRC on TS13a shows a direct connection between 67b and 13a.55 By taking into account the flat nature of the TSs, PES and the small energy difference between TS12a and TS13a, we believe that we are observing here a dynamic effect.⁶⁰ On the basis of the least motion principle,⁶¹ 64b will lead preferentially to 12a and 67b will lead to 13a, respectively. This would account for the difference between the experimental (75:25) and predicted (31:69) ratios (Table 3, entries 3 and 4). The slight energetic preference for TS13a could even explain why a better selectivity is observed experimentally for the reaction of Z,E-8a (Scheme 14)

compared to *E,E*-8a (Scheme 12). This is well represented by the IRC of TS13a.⁵⁵

We have previously established that the stereoselectivity in the thermolysis of analogues of E,E-8b-e, where the ester group is replaced by other electron-withdrawing groups, decreased when the electron-withdrawing power of the group increased (cf. Table 1). We believe that activating groups better at stabilizing the negative charge in zwitterion **65b** favor the equilibrium between the two rotamers (cf. Scheme 15), leading to an overall less stereoselective process.

Another way to confirm the influence of the stabilization of zwitterion 65b was to probe the effect of solvent on the product ratio obtained from the thermolysis of diene E,E-8a. Although many solvents or additives are incompatible with the intermediate dialkoxycarbene and cannot be used (nitro-methane,^{35,62} alcoholic solvents,^{36b} and other nucleophilic solvents^{63,64}), a reversed ratio of 28:72 was obtained in acetonitrile for 12a and 13a. This value is nearly identical to the calculated one (cf. Table 3, entries 3 and 4). A more detailed study of the effect of solvents and additives can be found in the Supporting Information. These experiments support the notion that the dynamic effect observed in toluene is not seen in polar media: the increased stability of the zwitterion **65b** decreases k_1 and k_2 to the benefit of k_{rot} and allows an equilibrium between the different rotamers of 65b, which then collapse preferentially to 13a (cf. Scheme 15). Conversely, heating E,E-7a and E-E-9a in acetonitrile gave the same ratios of products as per in toluene (24% and 21% yields, ⁶⁵ respectively). It appears that k_1 and k_2 , in the case of **65a** and **65c**, are lower than k_{rot} in polar or apolar solvents.

The results obtained from the thermolysis of methylsubstituted diene 56 at lower temperature (Scheme 9 vs Scheme 16) further demonstrate that the stereoselectivity of the (4 + 1)-cycloaddition is dictated by the difference in cyclization rate of a zwitterion intermediate (like 65b) and the rate of bond rotation (similar to Scheme 15, k_{rot} vs k_1 and k_2). At 111 °C, only cyclopropane 59 was isolated as a 77:23 mixture of stereoisomers.⁵⁴ When diene **59** or cyclopropane **59** was heated to 160 °C, bicyclic adducts 57 and 58 (44%, 57:58 = 94:6 ratio) were formed along with recovered cyclopropane 59 (12%) as a 70:30 mixture of diastereomers (cf. Scheme 9). Epimerization of 59 at C-3 occurs presumably because the rate of cyclization into bicyclic adducts 57 or 58 is slow and the zwitterionic species may revert back to cyclopropane after bond rotation.^{51,66} By opposition, the stereoselectivity observed for the thermolysis of 53 (cf. Scheme 9, 67%; 54:55 = 81:19) is similar to the one obtained from diene E,E-8a (75:25). It is believed that the methyl substituent in a remote position from the reacting center has a negligible effect on the stereoselectivity.

Computational analysis of the reaction of **56** indicates that the transition structures **TS57** and **TS58**, leading to **57** and **58**, respectively, possess relative free energies higher than that of the initial conjugate addition **TS59** (Figure 4). This could explain the epimerization of **59** and the lower yield of adducts **57** and **58**. Indeed, the possible reversibility between the free carbene, the zwitterion, and cyclopropane **59** would be accompanied by alternative degradation pathways. The high stereoselectivity, here, stems from a kinetic preference for **TS57** due to the severe interaction between the vinylic methyl group and the ring residue and the larger C1–C2 torsion on vinylogous ester enolate π -system present in **TS58** (Figure 4). Scheme 16. Results from the Thermolysis of Diene 56 at Lower Temperature

respect to TS45a.

Figure 4. B3LYP/6-311++G(d,p)//B3LYP/6-31+G(d) optimized cyclization TSs, leading to **57** and **58**. Relative energies $(\Delta G_{\rm rel})$ reported in kcal/mol with respect to the respective most stable conformation of the free carbene. Isomerization barriers $(\Delta G_{\rm iso}^{\dagger})$ reported with respect to *trans*-**59**.

 $\Delta G_{iso}^{\ddagger} = +36.8$

= +32.0

AGien[‡]

Unlike cyclopropanes 64a-b, compounds 40 and 42, which possess an activating group at C-2, have no driving force to open into a zwitterionic species and are thus thermally stable. We rapidly dismissed the idea that cycloadduct 45 would come from the thermal rearrangement of vinylcyclopropane 44 when resubmission of the latter to the reaction conditions or to higher temperatures failed to give any of compound 45 (cf. Scheme 7). This provides strong experimental evidence that 45 may be the product of a truly concerted (4 + 1)-cycloaddition. Contrary to 1-substituted dienes, a concerted (4 + 1)cycloaddition could be advantaged by the stabilizing effect at the transition state of electron-withdrawing groups at the C-2/ C-3 position.⁶⁷ We have been able to optimize and characterize in silico two transition structures that also support this assertion (Figure 5). In the case of TS45a, a two-step no-intermediate process was found to account for 45. The almost equi-energetic TS45b showed a truly concerted process that was confirmed by analysis of the IRC and the vibrational mode of the imaginary frequency. The particular stereochemistry of the trans ringjunction of 45, which had never been observed up to now in this study, might result from a conformational preference where the methoxy group of the dialkoxycarbene is directed inside the developing tricyclic structure.

Recall that moving the activating group at C-3 on the diene resulted in several changes in the stereoselectivity of the annulation and revealed a yet more complex mechanistic picture. Thermolysis of dienes **46** and **48** gave bicyclic cyclopentenes **47** and **49** in 72% and 82% yield, respectively, both as single diastereomers (cf. Scheme 8). The thermolysis of diene **50** (PhMe, 160 °C, 15 h) resulted in the unselective formation of diastereomers 51a, 51b and 52 in 20%, 34%, and

17% yield, respectively. We initially assumed that the corresponding cyclopropanes were intermediates in the mechanism of this formal (4 + 1)cycloaddition. However, heating 46 at 111 °C instead of 160 °C gave yet another surprising result: the cyclic orthoester **69** $(70\%^{54})$ was formed as the major compound (Scheme 17). This orthoester probably resulted from a cyclization of the corresponding zwitterionic species 72, themselves originating either from the opening of the corresponding cyclopropanes or from a conjugated addition of the carbene to the electrondeficient alkene. Recourse to the aromatic oxadiazoline $\mathbf{68}^{30b-d}$ and heating to 50 °C was necessary to investigate the formation of the cyclic orthoester in the case of the 6-5 bicyclic system. In this case, only orthoester 70 $(74\%^{54})$ was obtained, and no trace of the corresponding cyclopropane or the (4 + 1)cycloadduct 49 was detected. Lastly, when diene 50 was thermolyzed in PhCl at 132 °C, orthoester 71 was the major isolated product (65%⁵⁴) along with compound 52 (10%).

We attempted to confirm that orthoesters 69-71 were the exclusive source of (4 + 1)-products. The conversion of orthoester 69 into its corresponding *O*-heterobicycle required temperature as high as 160 °C. Yields of products and ratios were nearly identical as per when diene 46 was heated directly to 160 °C. Again, the 6-5 bicyclic system behaved differently than the other bicyclic systems and gave decomposition products in a reproducible manner when orthoester 70 was submitted to heat. We have no explanation for this behavior yet. Thermolysis of diene 50 for a short period of time (PhMe, 160 °C, 1.5 h) led to a mixture of orthoester 71 and cycloadducts 51a, 51b, and 52 in 35%, 13%, 22%, and 17% yield, respectively. Importantly, the relative amount of product 52 (17%, Schemes 8 and 17) did not change when heating was continued further to 160 °C (15 h), while the yields of 51a and

Scheme 17. Results from the Thermolysis of 46, 68, and 50

Figure 6. Three natural products that are targeted for synthesis.

51b increased gradually. Orthoester **71** is thus not the source of cycloadduct **52**.

The global picture for the thermolysis of 3-substituted dienes can now be summarized in two points: (1) in accord with Davies' findings,⁶⁸ the diastereocontrolled formation of cyclo-adducts **47**, **49**, **51a**, and **51b** would stem from a kinetic facial selectivity of the zwitterion 72. The latter, in our case, initially and reversibly, form the corresponding orthoesters **69**–**71**; (2) cyclopentene **52** (7–5 fused ring system) is *formed from a concerted* (4 + 1)-cycloaddition. The *trans* ring junction, as in **45**, seems to be a structural characteristic of cycloadduct arising from an intramolecular concerted (4 + 1)-cycloaddition.

CONCLUSION

We have shown that dialkoxycyclocarbenes can react with many dienes bearing various electron-withdrawing groups at two different positions to lead to (4 + 1)-cycloadducts in good yields and good-to-excellent stereoselectivities. We demonstrated that the intramolecular (4 + 1)-cyclization is a useful and valuable reaction that allows access to stereodefined fused bicyclic ring systems. The creation of adducts bearing a quaternary center is a definite highlight of this work.

We have shown that the mechanistic portrait of the intramolecular reactions of dialkoxycarbenes with electron-deficient dienes is complex. Many of the mechanistic pathways available to the free carbenes are close in energy, and small changes in the substrate affect which one is followed. Nevertheless, most carbenes react via the initial formation of a cyclopropane, which then opens to a zwitterion that closes again to the desired cyclopentene products with stereoselectivities that depend on the substrate. We have provided evidence of a truly concerted intramolecular (4 + 1)cycloaddition in two examples (dienes **43** and **50**), each case featuring the formation of a 7–5 fused bicyclic system. It seems that a *trans* ring junction is obtained in such cases as opposed to a *cis* ring junction when a zwitterionic intermediate is involved. How to favor the concerted pathway over the others is not obvious at this point, but it might be desirable to be able to do so in order to improve the stereochemical predictability of the reaction.

We are currently investigating a chiral nonracemic version of the cycloaddition and plan to use it to prepare the natural products carotol,⁶⁹ pseudolaric acid A,⁷⁰ and secospatacetal B^{71} (Figure 6).

ASSOCIATED CONTENT

G Supporting Information

Characterization and NMR spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

Claude.Spino@USherbrooke.ca

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the Natural Sciences and Engineering Research Council of Canada (NSERC) and the University of Sherbrooke for financial support. Computational resources were provided by the Réseau Québécois de Calcul de Haute Performance (RQCHP).

REFERENCES

Diels, O.; Alder, K. Justus Liebigs Ann. Chem. 1928, 460, 98-122.
 For books or reviews on the Diels-Alder cycloaddition, see:

 (a) Fringuelli, F.; Taticchi, A. The Diels-Alder Reaction: Selected Practical Methods; John Wiley & Sons: U.K., 2002.
 (b) Carruthers, W. Cycloaddition Reactions in Organic Synthesis; Pergamon Press: Oxford, U.K., 1990.
 (c) Oppolzer, W. Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Paquette, L. A., Eds.; Pergamon Press: Oxford, U.K., 1991; Vol. 5, p 315.
 (d) Nicolaou, K. C.; Snyder, S. A.; Montagnon, T.; Vassilikogiannakis, G. Angew. Chem., Int. Ed. 2002, 41, 1668-1698.

(3) According to the IUPAC, two different notations can be used to describe cycloaddition reactions. Round and square brackets describe the number of atoms or electrons, respectively, involved in the cycloaddition. Therefore, a reaction between a carbene and a conjugated diene should be described as a (4 + 1)-cycloaddition or as a [4 + 2]-cycloaddition. See: Muller, P. Pure Appl. Chem. 1994, 66, 1077–1184. To avoid any confusion with the Diels-Alder cycloaddition, we shall use the former throughout.

(4) (a) Flemming, I. Molecular Orbitals and Organic Chemical Reactions; John Wiley & Sons: U.K., 2010; Chapter 6. (b) Hoffmann, R.; Woodward, R. B. Acc. Chem. Res. 1968, 1, 17–22. (c) Woodward, R. B.; Hoffmann, R. Angew. Chem., Int. Ed. 1969, 8, 781–853.

(5) Very few examples of (4 + 1)-cycloadditions are known to be unequivocally concerted, and in all cases, the (4 + 1)-cycloadducts are obtained in very low yields: (a) Burger, U.; Gandillon, G. *Tetrahedron Lett.* **1979**, 20, 4281–4284. (b) Le, N. A.; Jones, M. Jr.; Bickelhaupt, F.; de Wolf, W. H. J. Am. Chem. Soc. **1989**, 111, 8491–8493. (c) Kraakman, P. A.; de Wolf, W. H.; Bickelhaupt, F. J. Am. Chem. Soc. **1989**, 111, 8534–8535. (d) Lambert, J. B.; Ziemnicka-Merchant, B. T. J. Org. Chem. **1990**, 55, 3460–3464 and references therein. (e) Turkenburg, L. A. M.; de Wolf, W. H.; Bickelhaupt, F. *Tetrahedron Lett.* **1982**, 23, 769–770. (f) Mayr, H.; Heigl, U. W. Angew. Chem., Int. Ed. **1985**, 24, 579–580. (g) Jenneskens, L. W.; de Wolf, W. H.; Bickelhaupt, F. Angew. Chem., Int. Ed. **1985**, 24, 585–586.

(6) For selected books and reviews on carbenes, see: (a) Brinker, U. H. In Advances in Carbene Chemistry; Elsevier Science B.V.: Amsterdam, 2001. (b) Bertrand, G. In Carbene Chemistry: From Fleeting Intermediates to Powerful Reagents; Marcel Dekker: New York, 2002. (c) Moss, R. A., Platz, M., Jones, M. Jr. In Reactive Intermediate Chemistry; John Wiley & Sons: New York, 2004. (d) Vignolle, J.; Cattoën, X.; Bourissou, D. Chem. Rev. 2009, 109, 3333–3384. (e) de Frémont, P.; Marion, N.; Nolan, S. P. Coord. Chem. Rev. 2009, 253, 862–892. (f) Cheng, Y.; Meth-Cohn, O. Chem. Rev. 2004, 104, 2507–2530.

(7) For exceptions where the (4 + 1)-cycloadduct is predominant, see: (a) Davies, H. M. L.; Clark, T. J. *Tetrahedron* **1994**, *50*, 9883–9892. (b) Sugita, H.; Mizuno, K.; Mori, T.; Isagawa, K.; Otsuji, Y. *Angew. Chem., Int. Ed. Engl.* **1991**, *30*, 984–986.

(8) Boisvert, L.; Beaumier, F.; Spino, C. Org. Lett. 2007, 9, 5361–5363.

(9) For theoretical investigations on the concerted (4 + 1)-cycloaddition and its competitive cyclopropanation reaction, see:
(a) Fujimoto, H.; Hoffmann, R. J. Phys. Chem. 1974, 78, 1167–1173.
(b) Schoeller, W. W.; Yurtsever, E. J. Am. Chem. Soc. 1978, 100, 7548–7550.
(c) Bauld, N. L.; Wirth, D. J. Comput. Chem. 1981, 2, 1–6.
(d) Schoeller, W. W.; Aktekin, N. J. Chem. Soc., Chem. Commun. 1982, 20–22.
(e) Evanseck, J. D.; Mareda, J.; Houk, K. N. J. Am. Chem. Soc. 1990, 112, 73–80 and references therein.

(10) (a) Buchert, M.; Hoffmann, M.; Reißig, H.-U. *Chem. Ber.* **1995**, 128, 605–614. (b) Buchert, M.; Reißig, H.-U. *Chem. Ber.* **1992**, 125, 2723–2729. (c) Buchert, M.; Reißig, H.-U. *Tetrahedron Lett.* **1988**, 29, 2319–2320.

(11) See for example: (a) Kurteva, V. B.; Afonso, C. A. M. *Chem. Rev.* **2009**, *109*, 6809–6857 and references therein. (b) Das, S.; Chandrasekhar, S.; Yadav, J. S.; Grée, R *Chem. Rev.* **2007**, *107*, 3286–3337.

(12) (a) Hudlicky, T.; Koszyk, F. J.; Kutchan, T. M.; Sheth, J. P. J. Org. Chem. 1980, 45, 5020–5027. (b) Hudlicky, T.; Koszyk, F. J.; Dochwat, D. M.; Cantrell, G. L. J. Org. Chem. 1981, 46, 2911–2915. (c) Short, R. P.; Revol, J.-M.; Ranu, B. C.; Hudlicky, T. J. Org. Chem. 1983, 48, 4453–4461.

(13) (a) Danheiser, R. L.; Bronson, J. J.; Okano, K. J. Am. Chem. Soc.
1985, 107, 4579–4582. (b) Danheiser, R. L.; Martinez-Davilla, C.;
Auchus, R. J.; Kadonaga, J. T. J. Am. Chem. Soc. 1981, 103, 2443–2446.
(c) Danheiser, R. L.; Martinez-Davilla, C.; Morin, J. M. Jr J. Org.
Chem. 1980, 45, 1340–1341.

(14) For selected reviews, see: (a) Hudlicky, T.; Reed, J. W. Angew. Chem., Int. Ed. 2010, 49, 4864–4876 and references therein. (b) Frey, H. M.; Walsh, R. Chem. Rev. 1969, 69, 103–124. (c) Sarel, S.; Yovell, J.; Sarel-Imber, M. Angew. Chem., Int. Ed. Engl. 1968, 7, 577–588. See also: (d) Mazzocchi, P. H.; Tamburin, H. J. J. Am. Chem. Soc. 1975, 97,

555-561. For other recent examples on the rearrangement of vinylcyclopropanes to cyclopentenes, see: (e) Willcott, M. R. III; Cargle, V. H. J. Am. Chem. Soc. 1969, 91, 4310-4311. (f) Willcott, M. R. III; Cargle, V. H. J. Am. Chem. Soc. 1967, 89, 723-724. (g) Baldwin, J. E.; Leber, P. A. Org. Biomol. Chem. 2008, 6, 36-47 and references therein. (h) Patel, P. R.; Boger, D. L. J. Am. Chem. Soc. 2010, 132, 8527-8529. (i) Qiao, Y.; Chu, T.-S. J. Org. Chem. 2011, 76, 3086-3095. (j) Coscia, R. W.; Lambert, T. H. J. Am. Chem. Soc. 2009, 131, 2496-2498. (k) Widenhoefer, R. A. Angew. Chem., Int. Ed. 2009, 48, 6950-6952. (1) Wang, S. C.; Tantillo, D. J. J. Organomet. Chem. 2006, 691, 4386-4392. (m) Baldwin, J. E. Chem. Rev. 2003, 103, 1197-1212. (n) Davies, H. M. L.; Kong, N.; Churchill, M. R. J. Org. Chem. 1998, 63, 6586-6589. For a discussion on the isomerization of various cyclopropanes substituted with carbonylated groups into their corresponding five-membered heterocycles, see: (o) Schneider, T. F.; Werz, D. B. Org. Lett. 2011, 13, 1848-1851.

(15) For metal-catalyzed carbonylative (4 + 1)-cycloadditions, see: (a) Meng, Q.; Li, M.; Zhang, J. J. Mol. Struct.: Theochem. 2005, 726, 47–54 and references therein. (b) Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49–92. (c) Frühauf, H.-W. Chem. Rev. 1997, 97, 523–596.

(16) For leading references, see: (a) Li, Z.; Moser, W. H.; Deng, R.; Sun, L. J. Org. Chem. 2007, 72, 10254–10257. (b) Oshita, M.; Yamashita, K.; Tobisu, M.; Chatani, N. J. Am. Chem. Soc. 2005, 127, 761–766. (c) Rigby, J. H.; Qabar, M. J. Am. Chem. Soc. 1991, 113, 8975–8976.

(17) For examples of formal (4 + 1)-cyclizations involving diazo reagents, see: (a) Dalton, A. M.; Zhang, Y.; Davie, C. P.; Danheiser, R. L. Org. Lett. 2002, 4, 2465–2468. (b) Moser, W. H.; Feltes, L. A.; Sun, L.; Giese, M. W.; Farrell, R. W. J. Org. Chem. 2006, 71, 6542–6546. (c) Zhao, L.-B.; Guan, Z.-H.; Han, Y.; Xie, Y.-X.; He, S.; Liang, Y.-M. J. Org. Chem. 2007, 72, 10276–10278. (d) Giese, M. W.; Moser, W. H. Org. Lett. 2008, 10, 4215–4218.

(18) For a recent example, see: Lu, L.-Q.; Zhang, J.-J.; Li, F.; Chen, Y.; An, J.; Chen, J.-R.; Xiao, W.-J. Angew. Chem., Int. Ed. 2010, 49, 4495–4498 and references therein.

(19) For examples of formal (4 + 1)-annulations using copper carbenoids, see: (a) Son, S.; Fu, G. C. J. Am. Chem. Soc. 2007, 129, 1046–1047. For rhodium carbenoids, see: (b) Mizuno, A.; Kusama, H.; Iwasawa, N. Angew. Chem., Int. Ed. 2009, 48, 8318–8320. (c) Schnaubelt, J.; Marks, E.; Reissig, H. U. Chem. Ber. 1996, 129, 73–75. For chromium carbenoids, see: (d) Barluenga, J.; Fanlo, H.; López, S.; Flórez, J. Angew. Chem., Int. Ed. 2007, 46, 4136–4140. (e) Barluenga, J.; López, S.; Flórez, J. Angew. Chem., Int. Ed. 2003, 42, 231–233. For α -benzotriazolyl organolithium compounds, see: (f) Davie, C. P.; Danheiser, R. L. Angew. Chem., Int. Ed. 2005, 44, 5867–5870.

(20) Spino, C.; Rezaei, H.; Dupont-Gaudet, K.; Bélanger, F. J. Am. Chem. Soc. 2004, 126, 9926–9927.

(21) For more examples of (4 + 1)-cycloadditions involving nucleophilic carbenes and various dienes, see: (a) Rigby, J. H.; Sidique, S. Org. Lett. 2007, 9, 1219–1221 and references therein. (b) Er, H.-T.; Pole, D. L.; Warkentin, J. Can. J. Chem. 1996, 74, 1480–1489. (c) Rigby, J. H.; Laurent, S. J. Org. Chem. 1999, 64, 1766–1767. (d) Rigby, J. H.; Cavezza, A.; Heeg, M. J. Tetrahedron Lett. 1999, 40, 2473–2476. (e) Rigby, J. H.; Laurent, S.; Dong, W.; Danca, M. D. Tetrahedron 2000, 56, 10101–10111. (f) Rigby, J. H.; Neale, N. A.; Schlegel, H. B. Heterocycles 2002, 58, 105–113. (g) Rigby, J. H.; Wang, Z. Org. Lett. 2002, 4, 4289–4291. (h) Rigby, J. H.; Masmul, M. Heterocycles 2004, 62, 143–147. (i) Rigby, J. H.; Burke, P. J. Heterocycles 2006, 67, 643–653. (j) Cheng, Y.; Wang, B.; Cheng, L-Q. J. Org. Chem. 2006, 71, 4418–4427.

(22) For a review on 2,2-dialkoxy- Δ^3 -1,3,4-oxadiazolines and the reactivity of bis(heteroatom-substituted)carbenes, see: Warkentin, J. Acc. Chem. Res. **2009**, 42, 205–212 and references therein.

(23) (a) Hoffmann, R. W.; Häuser, H. Tetrahedron 1965, 21, 891–
902. (b) Hoffmann, R. W. Angew. Chem., Int. Ed. Engl. 1971, 10, 529–
537. (c) Lemal, D. M.; Gosselink, E. P.; McGregor, S. D. J. Am. Chem. Soc. 1966, 88, 582–600.

(24) In the absence of sufficiently reactive partner reagents, dialkoxycarbenes prefer to dimerize to form the corresponding tetraalkoxyethylenes.

(25) Lilienblum, W.; Hoffmann, R. W. Chem. Ber. 1977, 110, 3405-3409.

(26) Colomvakos, J. D.; Egle, I.; Ma, J.; Pole, D. L.; Tidwell, T. T.; Warkentin, J. J. Org. Chem. 1996, 61, 9522-9527.

(27) Rigby, J. H.; Casseva, A.; Gulzar, A. J. Am. Chem. Soc. 1996, 118, 12848 - 12849.

(28) Hoffmann, R. W. Acc. Chem. Res. 1985, 18, 248-253.

(29) Moss, R. A. Acc. Chem. Res. 2006, 39, 267-272 and references therein.

(30) For the thermolysis of dimethyl oxadiazolines (100 °C), see: (a) El-Saidi, M.; Kassam, K.; Pole, D. L.; Tadey, T.; Warkentin, J. J. Am. Chem. Soc. 1992, 114, 8751-8752. For the thermolysis of arylmethyl oxadiazolines (50 °C), see: (b) Sokol, W.; Warkentin, J. Can. J. Chem. 2006, 84, 927-933. (c) Zhou, H.; Mloston, G.; Warkentin, J. Org. Lett. 2005, 7, 487-489. (d) Zhou, H.; Mloston, G.; Warkentin, J. Org. Lett. 2008, 10, 1323. For the thermolysis of strained oxadiazolines (≤27 °C), see: (e) Czardybon, W.; Sokol, W.; Warkentin, J.; Werstiuk, N. H. J. Phys. Org. Chem. 2008, 21, 41-46.

(31) The relative stereochemistries of 12b, 12c, 12e, 13f, 14b, 44, 45, 57, and 49 (after derivatization) were confirmed by single-crystal X-ray diffraction analysis while relative stereochemistries of 12g, 12h, 13g, 14a, 38h, 38i, 40, 47, 51a, 51b, 52, 54, and 55 were confirmed by NOESY correlations (see Supporting Information). The stereochemistries of 11a, 12a, and 13a were assigned from a single crystal X-ray analysis of derivatives, and those of aldehydes 11d and 12d were confirmed by their reduction to the corresponding known alcohols (see ref 20).

(32) For the reactivity of the related transient allyloxymethoxycarbenes, benzyloxymethoxycarbenes and dibenzyloxycarbenes, see: (a) Venneri, P. C.; Warkentin, J. J. Am. Chem. Soc. 1998, 120, 11182-11183. (b) Reid, D. L.; Warkentin, J. J. Chem. Soc., Perkin Trans. 2 2000, 1980-1983. (c) Reid, D. L.; Hernández-Trujillo, J.; Warkentin, J. J. Phys. Chem. A 2000, 104, 3398-3405. (d) Merkley, N.; El-Saidi, M.; Warkentin, J. Can. J. Chem. 2000, 78, 356-361. (e) Merkley, N.; Warkentin, J. Can. J. Chem. 2000, 78, 942-949. (f) Merkley, N.; Venneri, P. C.; Warkentin, J. Can. J. Chem. 2001, 79, 312-318. (g) Merkley, N.; Warkentin, J. Can. J. Chem. 2002, 80, 1187-1195. (h) Merkley, N.; Reid, D. L.; Warkentin, J. Tetrahedron Lett. 2002, 43, 1927-1929. (i) Plazuk, D.; Warkentin, J.; Werstiuk, N. H. Tetrahedron 2005, 61, 5788-5796.

(33) Conversion was determined by ¹H NMR spectroscopy. Any attempts at purification resulted in complete degradation of the product.

(34) The reported pK_a values of CH_3NO_2 in H_2O and DMSO are 10.2 and 17.2, respectively. H₂O: Matthews, W. S.; Bares, J. E.; Bartmess, J. E.; Bordwell, F. G.; Cornforth, F. J.; Drucker, G. E.; Margolin, Z.; McCallum, R. J.; McCollum, G. J.; Vanier, N. R. J. Am. Chem. Soc. 1975, 97, 7006-7014. DMSO: Turnbull, D.; Maron, S. H. J. Am. Chem. Soc. 1943, 65, 212-218.

(35) For the estimated pK_a values for protonation of dimethoxycarbene, see: (a) Keeffe, J. R.; More O'Ferrall, R. A. ARKIVOC 2008, 10, 183-204. (b) Guthrie, J. P.; More O'Ferrall, R. A.; O'Donoghue, A. C.; Waghorne, W. E.; Zrinski, I. J. Phys. Org. Chem. 2003, 16, 582-587. (c) Pezacki, J. P. Can. J. Chem. 1999, 77, 1230-1240.

(36) For examples of insertion reactions between dimethoxycarbene and compounds with acidic protons, see: (a) Couture, P.; Pole, D. L.; Warkentin, J. J. Chem. Soc., Perkin Trans. 2 1997, 1565-1570. (b) Du, X.-M.; Fan, H.; Goodman, J. L.; Kesselmayer, M. A.; Krogh-Jespersen, K.; LaVilla, J. A.; Moss, R. A.; Shen, S.; Sheridan, R. S. J. Am. Chem. Soc. 1990, 112, 1920-1926.

(37) Boisvert, Luc, Ph.D. Thesis, Université de Sherbrooke, 2006.

(38) Similar adducts have been observed from a homo-[1,5]sigmatropic hydrogen migration on various vinylcyclopropanes. See: (a) Ellis, R. J.; Frey, H. M. J. Chem. Soc. 1964, 5578-5583. (b) Loncharich, R. J.; Houk, K. N. J. Am. Chem. Soc. 1988, 110, 2089-2092. (c) Piers, E.; Maxwell, A. R. Can. J. Chem. 1984, 62, 2392-2395. Article

(39) Dupont-Gaudet, K., M.Sc. Thesis, Université de Sherbrooke, 2006.

1652

(40) For selected examples of Diels-Alder reaction involving trifluoromethyl dienes, see: (a) Ignatowska, J.; Dmowski, W. J. Fluorine Chem. 2006, 127, 720-729. (b) Nagai, T.; Nasu, Y.; Shimada, T.; Shoda, H.; Koyama, M.; Ando, A.; Miki, T.; Kumadaki, I. J. Fluorine Chem. 1992, 57, 245-249.

(41) Shimizu, M.; Hiyama, T. Angew. Chem., Int. Ed. 2005, 44, 214-231 and references therein.

(42) For selected examples of three-component [4 + 2]-cycloaddition-allylboration sequence, see: (a) Gao, X.; Hall, D. G.; Deligny, M.; Favre, A.; Carreaux, F.; Carboni, B. Chem.-Eur. J. 2006, 13, 3132-3142. (b) Gao, X.; Hall, D. G. J. Am. Chem. Soc. 2003, 125, 9308-9309.

(43) For examples, see: (a) Fuerst, D. E.; Stoltz, B. M.; Wood, J. L. Org. Lett. 2000, 2, 3521-3523. (b) Fouque, E.; Rousseau, G.; Seyden-Penne, J. J. Org. Chem. 1990, 55, 4807-4817.

(44) For palladium-catalyzed reactions, see:(a) Fugami, K.; Morizawa, Y.; Oshima, K.; Nozaki, H. Tetrahedron Lett. 1985, 26, 857-860. (b) Burgess, K. J. Org. Chem. 1987, 52, 2046-2051. (c) Burgess, K. Tetrahedron Lett. 1985, 26, 3049-3052. (d) Harvey, D. F.; Brown, M. F. Tetrahedron Lett. 1991, 32, 2871-2874. For rhodium-catalyzed reactions, see: (e) Hayashi, M.; Ohmatsu, T.; Meng, Y.-P.; Saigo, K. Angew. Chem., Int. Ed. 1998, 37, 837-839. (f) Jun, C.-H.; Kang, J.-B.; Lim, Y.-G. Tetrahedron Lett. 1995, 36, 277-280. (g) Alcock, N. W.; Brown, J. M.; Conneely, J. A.; Williamsom, D. H. J. Chem. Soc., Perkin Trans. 2 1979, 962-971. (h) Salomon, R. G.; Salomon, M. F.; Kachinski, J. L. C. J. Am. Chem. Soc. 1977, 99, 1043-1054. (i) Aris, V.; Brown, J. M.; Conneely, J. A.; Golding, B. R.; Williamson, D. H. J. Chem. Soc., Perkin Trans. 2 1975, 4-10. (j) Alcock, N. W.; Brown, J. M.; Conneely, J. A.; Williamsom, D. H. J. Chem. Soc., Chem. Commun. 1975, 792-793. (k) Grigg, R.; Hayes, R.; Sweeney, A. J. Chem. Soc., Chem. Commun. 1971, 1248-1249. (1) Hudlicky, T.; Koszyk, F. J.; Kutchan, T. M.; Sheth, J. P J. Org. Chem. 1980, 45, 5020-5027. For nickel-catalyzed reactions, see: (m) Wang, S. C.; Troast, D. M.; Conda-Sheridan, M.; Zuo, G.; LaGarde, D.; Louie, J.; Tantillo, D. J. J. Org. Chem. 2009, 74, 7822-7833. (n) Zuo, G.; Louie, J. Angew. Chem., Int. Ed. 2004, 43, 2277-2279. (o) Ryu, I.; Ikura, K.; Tamura, Y.; Maenaka, J.; Ogawa, A.; Sonoda, N. Synlett 1994, 941-942. (p) Murakami, M.; Nishida, S. Chem. Lett. 1979, 927-930.

(45) For leading references, see: (a) Liu, P.; Sirois, L. E.; Cheong, P. H.-Y.; Yu, Z.-X.; Hartung, I. V.; Rieck, H.; Wender, P. A.; Houk, K. N. J. Am. Chem. Soc. 2010, 132, 10127-10135 and references therein. (b) Wender, P. A.; Stemmler, R. T.; Sirois, L. E. J. Am. Chem. Soc. 2010, 132, 2532-2533.

(46) For examples of radical-mediated ring opening of vinylcyclopropanes, see: (a) Miura, K.; Fujisawa, N.; Hosomi, A. J. Org. Chem. 2004, 69, 2427-2430. (b) Miura, K.; Fujisawa, N.; Saito, H.; Nishikori, H.; Hosomi, A. Chem. Lett. 2002, 32-33. (c) Booker-Milburn, K. I.; Barker, A.; Brailsford, W.; Cox, B.; Mansley, T. E. Tetrahedron 1998, 54, 15321-15344.

(47) The thermolysis of 2,2-dimethoxy-5,5-dimethyl- Δ^3 -1,3,4-oxadiazoline at 100 °C follows a first-order kinetic with $k = 1.2 \times 10^{-5} \text{ s}^{-1}$. See ref 30a.

(48) The possibility of the carbene reacting as a diradical is excluded since the singlet state is stabilized by -53 kcal/mol relative to the triplet state. See: Mendez, F.; Garcia-Garibay, M. A. J. Org. Chem. 1999, 64, 7061-7066.

(49) Flemming, I. Molecular Orbitals and Organic Chemical Reactions; John Wiley & Sons: U.K., 2010; Chapter 6.

(50) For the stereospecific cyclopropanation of dimethoxycarbene to β-deuteriostyrenes, see: Moss, R. A.; Huselton, J. K. J. Chem. Soc., Chem. Commun. 1976, 950-951.

(51) For examples of zwitterionic rearrangement of vinylcyclopropanes, see: (a) Barluenga, J.; Tomás, M.; Suárez-Sobrino, A. L. Synthesis 2000, 935–940. (b) Buchert, M.; Reissig, H.-U. Liebigs Ann. 1996, 2007–2013.

(52) For the involvement of diradicals in the isomerization of vinylcyclopropanes into their corresponding cyclopentenes, see: Baldwin, J. E. *J. Comput. Chem.* **1998**, *19*, 222–231. (b) See also refs 14b and 14h.

(53) For reviews on the reactivity of donor-acceptor cyclopropanes, see: (a) Reissig, H.-U.; Zimmer, R. Chem. Rev. 2003, 103, 1151-1196.
(b) Yu, M.; Pagenkopf, B. L. Tetrahedron 2005, 61, 321-347. (c) De Simone, F.; Waser, J. Synthesis 2009, 3353-3374.

(54) Figures created with *CYLview*, *1.0b*; Legault, C. Y.; Université de Sherbrooke, 2009 (http://www.cylview.org).

(55) See Supporting Information for more details.

(56) Singleton, D. A.; Hang, C.; Szymanski, M. J.; Meyer, M. P.; Leach, A. G.; Kuwata, K. T.; Chen, J. S.; Greer, A.; Foote, C. S.; Houk, K. N. J. Am. Chem. Soc. **2003**, *125*, 1319–1328.

(57) This kind of behavior has already been illustrated by calculations. See ref 14j.

(58) (a) Berson, J. A. Acc. Chem. Res. **1972**, 5, 406–414. (b) Berson, J. A.; Salem, L. J. Am. Chem. Soc. **1972**, 94, 8917–8918.

(59) Danheiser, R. L.; Martinez-Davila, C.; Auchus, R. J.; Kadonaga, J. T. J. Am. Chem. Soc. **1981**, 103, 2443–2446.

(60) (a) Oyola, Y.; Singleton, D. A. J. Am. Chem. Soc. 2009, 131, 3130–3131. (b) Vayner, G.; Addepalli, S. V.; Song, K.; Hase, W. L. J. Chem. Phys. 2006, 125, 014317.

(61) Hine, J. Adv. Phys. Org. Chem. 1978, 15, 1-61.

(62) It has been shown that dimethoxycarbene inserts into acidic protons of nitromethane to give 1,1-dimethoxy-2-nitroethane. See ref 37.(63) For reviews on the preparation and properties of nitrile ylides,

see: (a) Kirmse, W. Eur. J. Org. Chem. 2005, 237–260. (b) Escolano, C.; Duque, M. D.; Vázquez, S. Curr. Org. Chem. 2007, 11, 741–772.

(64) For the rate constants of pyridinium ylide formation from oxycarbenes and pyridine, see: (a) Bonneau, R.; Liu, M. T. H.; Lapouyade, R. J. Chem. Soc., Perkin Trans. 1 1989, 1547–1548.
(b) Jones, M. B.; Platz, M. S. J. Org. Chem. 1991, 56, 1694–1695.
(c) Ge, C. S.; Jang, E. G.; Jefferson, E. A.; Liu, W.; Moss, R. A.; Wlostowska, J.; Xue, S. J. Chem. Soc., Chem. Commun. 1994, 1479–1480. For related dipolar cycloadditions of pyridinium ylides derived from the reaction of carbenes and pyridine, see: (d) Shevchenko, V. V.; Zhegalova, N. G.; Borzenko, A. O.; Nikolaev, V. A. Helv. Chim. Acta 2008, 91, 501–509. (e) Jackson, J. E.; Soundararajan, N.; Platz, M. S. J. Am. Chem. Soc. 1988, 110, 5595–5596.

(65) Large quantities of formates and carbonates accompanied the cycloadducts, which explains the lower yields obtained.

(66) For ring opening and reclosing to isomeric cyclopropanes through zwitterionic intermediates, see: (a) Howe, N. E.; Yankee, E. W.; Cram, D. J. J. Am. Chem. Soc. **1973**, 95, 4230–4237. (b) Chmurny, A. B.; Cram, D. J. J. Am. Chem. Soc. **1973**, 95, 4237–4244.

(67) For examples and an explanation of this effect in the Diels– Alder cycloaddition, see: (a) Spino, C.; Pesant, M.; Dory, Y. L. Angew. Chem., Int. Ed. **1998**, 37, 3262–3265. (b) Spino, C.; Rezaei, H.; Dory, Y. L. J. Org. Chem. **2004**, 69, 757–764.

(68) For stereoselective Et₂AlCl-induced ring expansion of donor– acceptor substituted vinylcyclopropanes on relatively similar systems, see ref 14i.

(69) (a) Sykora, V.; Novotny, L.; Holub, M.; Herout, V.; Sorm, F. Collect. Czech. Chem. Commun. 1961, 26, 788-802. (b) De Broissia, H.; Levisalles, J.; Rudler, H. Bull. Soc. Chim. Fr. 1972, 4314-4318.
(c) Miski, M.; Mabry, T. J. Phytochemistry 1986, 25, 1673-1675.
(d) Williams, C. A.; Harborne, J. E. Phytochemistry 1972, 11, 1981-1987. (e) Benecke, R.; Reinhold, K.; Kessel, M.; Schmidt, W. Pharmazie 1987, 42, 256-259.

(70) (a) Li, Z. L.; Pan, D. J.; Hu, C. Q.; Wu, Q. L.; Yang, S. S.; Xu, G. Y. Acta Chim. Sin. **1982**, 40, 447. (b) Li, Z. L.; Pan, D. J.; Wu, Q. L.; Xu, G. Y. Acta Chim. Sin. **1982**, 40, 757. (c) Trost, B. M.; Waser, J.; Meyer, A. J. Am. Chem. Soc. **2008**, 130, 16424–16434. (d) Geng, Z.; Chen, B.; Chiu, P. Angew. Chem., Int. Ed. **2006**, 45, 6197–6201.

(71) Yamase, H.; Umemoto, K.; Ooi, T.; Kusumi, T. Chem. Pharm. Bull. **1999**, 47, 813-818.